
U11CFILE COP6
ARI Research Note 87-63

Il.

World Modeler SEI Library Builder

00
Peter Shell

University of California, Irvine

for

Contracting Officer's Representative
Judith Orasanu

BASIC RESEARCH LABORATORY

Michael Kaplan, Director D
_ SELECTE D

DEC 29 198711

U. S. Army

Research Institute for the Behavioral and Social Sciences '

December 1987

Applrovedl for public release; distribution unlimited.

* 12 14 160
1

H

U. S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON

*EDGAR M. JOHNSON QOL, IN

Technical Dircictor Commnanding

Research accomplished under contract

for the Department of the Army

University of California, Irvine

Technical review by

Dan Ragland

Aor EI'n For

t Codes

Av~lti an ';Ir

This report. as submitted by the contractor. has been cleared fcr release to DefenseTehia nomtnEelf
(OTC) o cmpl w~ti eguatoy 1quicrmts.11 as eengivn n prmar ditbtinca nothraln ente

and will be available only thro~ugh DTIC or other reference services such as the National Technical lnforma1isof
service (NTIS). The vicws, cpini'-,ns. and/or findings contained in this repon are those of the author lst and
should not be conitrue.. as an oflscia; Coepaitmen, of the Armry position. policy. or decision. unless so designaled

by ote ofica documentation.,~%f .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wfi.. Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1REPORT NUMBER 2.GOVT ACCESSION NO. 3. RECiPIENT'S CATALOG NUMBER

4. TITLE (mid &sbeftle) S. TYPE OF REPORT a PERIOD COVERED

Interim Report
World Modeler SEI Library Builder July 86 - July 87

6. PERFORMING ORG. REPORT NUMBER

7. AUTHIOR(*) S. CONTRACT OR GRANT NUMBER(*)

Peter Shell FIDA93-85-C-0324

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
4 AREA 4 WORK UNIT NUMBERS

University of California, Irvine 2110B4
Department of Information and Computer Science 2110B4
Irvine, CA 92717 ______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Research Institute for the Behavioral December 1987
and Social Sciences, 5001 Eisenhower Avenue, 13. NUMBER OF PAGES

Alexandria, VA 22333-5600 8
14. MONITORING AGENCY NAME 4k AODRESS(Of different from Conitrollng Office) IS. SECURITY CLASS. (of this report)

* Unclassified
IS&. DECLASSI FICATION/ DOWNGRADING

SCHEDULE
_________________________n~a

III. DISTRIBUTION STATEMENT (of this Report)

* Approved for public release; distribution unlimited.

* 17. DISTRIBUTION STATEMENT (of Mhe abstract entered in Block 20, It different herm Report)

IS. SUPPLEMENTARY NOTES

Judith Orasanu, contractinq officer's representative

19. KEY WORDS (Coninue ani reverse aide it necesary7 mid Identify by block number)

*World Modeler Artificial Intelligence
SEI Learning Models
LispSEI

24L AMTVACr (Cnou M roem h N nmemf MIN hd -UUEy' 3 block mnffbe)

This research note describes two different libraries (sensor and effector),
which provide an abstract data type called the sensor. The sensor libraries
allow an organism program to receive environmental data in different forms and
degrees of filtering, while the effector libraries allow the orqanism to adapt
to the environment in a "fair" way.

DD W,1 3 twionfOwOI avsSis onsOLaTa UNCLASSIFIED
SECURITY CLASSIFICATION OF THMIS PAGE (When Does Entered)

.M

World Modeler SEI Library Builder

Peter Shell

1. Introduction
The SEI librarian provides an abstract data type called the sensor, which is used for perceiving the

world. It also provides facilities for defining filtering functions over perceived things in the world. It runs

In Commonlisp, and requires that LispSEI Is loaded In first. Although anybody may write a library

function, they should be defined through the filter-defining macros described in this document. Some

filters of general use are already provided (see Appendix I).

There are two different kinds of libraries: sensor libraries and effector libraries. The sensor libraries

allow the organism program to receive environmental data In various forms and with various degrees of .,.

filtering. They onl.provide informationaabout the physical environment, and no information about the

organism's internal state. The effector libraries allow the organism to make changes to the

environment, while ensuring that the basic laws of conservalion of energy and momentum are obeyed

as much as is practical. r , .

2. Sensor Libraries
The SEI library provides, as well as some basic filtering functions, an abstract data type called the

sensor. A sensor is something attached to an object (usually part of the organism), and is associated

with one of the sense types (vision, hearing, smell, taste, and touch). Each of lese senses is capable 0

of sensing a different kind of World Modeler entity, e.g., objects, emissions, etc.., as described in the

LispSEI manual. The senses and entities form the following correspondences:

Sense Entity

Vision Object

Heauing Emissions of type sound.

Smell Emissions of type smell.

Taste Taste fields of objects.

Touch Contact-type.

.5.

' " " -' " 'i° ' ,' ',' , , .' -. ,' .-. 'm'# -- tu . * . ' -,-,- M .. ."." " ' ' .. '''w .' " 0"

2

Various types of filtering functions may also be associated with Sensors. Only entities which pass

through each of these filters are sensed by the organism. The sensor library provides a handful of

pre-defined filtering functions, as well as filter-defining macros.

(def-sensor <sensor-name> <sense-type> (object> (entity-filters) (field-mungers>)

Defines a sensor called <sensor-name>, which can sense the <sense-type> sense, and attaches it to

<object>t , making that object a sensor. <object) may be either the name of an object, In which case it is

an atom, or it can be a list whose first element is the name of an object and whose remaining elements

are coordinates specifying the location (in world-wide x, y and z coordinates) on the object where the

sensor should be. If the location is not supplied, then the geometric center of the object is used.

The sensor is associated with the ordered list of filters and constraints named in <entity-filters> (see

def-filter and del-constraint, below), and with the list of field mungers named in (field-mungers>

(see def-field-munger, below). As with <object), each of the entity filters and field mungers named

In (entity-filters> and (fleld-mungers> may be either atoms or lists. If they are atoms, then they

name a filter or munger which takes no arguments; if they are a list, then the car of the list names the

filter or munger, and the rest of the list gives values for sensor parameters with respect to that filter or

munger. The number of parameters given to each filter and munger must be the same as the number of

parameters declared by def-filter, def-constraint or def-fleld-munger. Each filter, constraint or

munger must have been defined before being referenced in def-sensor, and they must be of the

appropriate sense type. Example:

(def-sensor nose smell nosel (combine-smells (smell-distance-constraint 5.0))

0)

Combine-smells is assumed to be some filter which combines the Input list of smells Into one smell.

Smell-distance-constraint is a constraint which only allows smells within a given distance to be sensed.

For the nosel sensor that distance is always 5.0 meters. Nosel has no field mungers.

When more than one entity-filter is specified, the list of entities is successively subjected to each of

the ffltem In turn. The constraints will be tried before the filters since they are usually cheaper.

(sense (sensor-name)

f(oiect) is normally part of the organm's body, although N doesn't have to be!

10

3

Gets the list of sensory data (entities) appropriate to <sensor-name>, passes it through the
appropriate <entity-filters> and (field-mungers, and returns the processed list of senses. For example,

(sense 'nose 1) would get all the smells which pass through the corn bine-smells filter.

(def-filter <name> <params> <sense-type>. (body>)

General sense-filter defining macro. Defines a method for filtering out entities from a given list of
entities.

<name> Is the name given to the filtering function.

(params> Is a list of the names of the parameters given to the function, () if none.

(sense-type> Is one of the legal sense types. Only entities corresponding to the sense-type will be

passed through the filter.

(body> Is the actual code to do the filtering. The syntax ". <body>" means that it Is an Implicit progn,
as with defun. The resulting function that is written will contain the <body> as the body, and will take

the parameters described In (params>, plus two parameters, entities and sensorobj, as input. Entities
is a list of entities of the appropriate type. sensorobj Is the object that has sensed the entities. The

<body> should return a list of entities which is a subset of the input list. Example:

;;: This simple filter reduces the list of objects to a list containing
;;; the N closest objects to the organism. It is assumed that my-min is
;;; defined to be like min but take a :key and :lowest param.
(def-filter closest-objects (n) vision

(my-min entities :lowest n
:key #'(lambda (obj) (get-object-distance obj sensorobj))))

(def-fleld-munger <name> <params> (sense-type> (field> . <body>)

JO

Associates a munger with a field of entities of the type corresponding to <sense-type). Whenever a
field named (field: s retrieved, It Is munged by each of the field-mungers associated with It by
def-field-munger. For now, fields are only munger after the filters have been executed; i.e., the filters
will be looking at the original values of the fields, but the organism will be seeing the munged values.

When the body is executed It can be assumed that field Is bound to the value of the field. For example:

4

;:; For an organism which can only see red or blue. It Is
;;; assumed that color-sum is some fn which returns the "color sum".
(def-fleld-munger make-red-or-blue (thresh) vision outside-color

(if (< (color-sum field) thresh)
(make-color :red 255 :blue 0 :green 0)
(make-color :red 0 :blue 255 :green 0)))

(def-constraint (name> <params> (sense-type>. (body>)

Defines a constraint for the entities of type (sense-type>, and calls it (name). The parameters are the

same as for (def-filter>. The difference Is that constraints are given one entity at a time, instead of a

list of entites. For each entity they are given, they return either nil or non-nil, to indicate whether the

entity should be allowed to stay in the overall list.

(params> is a list of the names of the parameters which are given to the constraint function.

body> is the progn to compute whether the given entity should stay. The body will have as

parameters the parameters described in the (params> list, as well as the two parameters entity and -

sensorob.

Although filters can do everything constraints can, constraints may only take one entity at a time, and

are provided because they may be implemented more efficiently. Whereas filters operate on a whole

list of entities, if an entity can be removed from consideration by only looking at it and possibly the

sensor, then it should be expressed as a constraint. In fact, most filtering can be expressed as

constraints. For instance:

;;; Only sense the smells that are near your "nose" (i.e.. less than S
;;; max-distance meters away).
(def-constraint smell-distance-constraint (max-distance) smell

(< (vector-distance (emission-origin entity)
(object-location sensorobj))

max-distance))

(pp-sensor (sensor-name>) Pretty-prints the given named sensor. (sensor-name> does not have

.to be quoted.

.

- " . ~. r*'p",, .A. D~~~*~ - % ";..:- . . - '

5

2.1. Auxiliary Sensor Functions

The obvious sense functions such as see and smell can be built on top of the basic sense command.

For example, see means to get all the data from all the sensors of type vision. However, there is as yet

no general model for integrating the various sensory data coming from the different sensors, so the

different lists of entities sensed by the different sensors is simply returned as a list of lists.

2.1.1. See

Return a list of all the entity lists returned by calling sense on each of the sensors of type vision.

2.1.2. Smell

Return a list of all the entity lists returned by calling sense on each of the sensors of type smell.

2.1.3. Taste

Return a list of all the entity lists returned by calling sense on each of the sensors of type taste.

2.1.4. Hear

Return a list of all the entity lists returned by calling sense on each of the sensors of type hearing.

NOTE: be sure not to call listen instead, since it is a reservered Commonlisp functionl

2.1.5. Feel

Return a list of all the entity lists returned by calling sense on each of the sensors of type touch.

2.2. Object-getting Functions

2.2.1. get-object (object-number>

Returns the object with the given number. If the object had already been loaded on the current cycle,

then it doesn't bother to re-copy the object from C.

2.2.2. get-object-named (name>
Returns the object with the given name. Name must be a string. Uses get.object.

3. Effector Libraries
Effector functions allow the organism to make changes to the environment in a "fair" way. Fair is

defined here as: try to conserve the laws of conservation of momentum and energy. They may also be

thought of macro-operators, the primitive operators being the ones provided by the LUspSEI.

Effector functions should be written by individual members of World Modelers since everybody has a

different idea as to how different effector functions should work. However, a few sample effectors are

)I

' I
, .¢;., ;: ' ';:',r':",' ,'~~~~~~~~.-. -'?-........., ..'- ,.'•.... • . ."-

6

provided in the World Modelers SEI directory.

S
K,

S.

'V
I

-D

-A

S

I

in$~~vt.~ t~W
4

*j~r ~ *: ~ ~ %~'V *..>~ *- .***.*-* * ~.*.......* . -. *. . * .~%*** .*.- ...- . .. * ..

* * - * - *

7

I. The Files
The SEI library module is in /usr/worldm/src/sei/seidef.lisp. The compiled form of this for Perqs is

aeidef.sfasl; for Suns it is seidefibin. An Initial filter and effector library is located in

/usr/worldm/src/sei/seilib~lisp, seilib.sfasl and seilib.lbin. Additions of general use may be made to

this library, or users may make their own libraries. Libraries are compilable. This document is

/usr/pshell/worldm/sei/seiprop.mss.

M

4i

